Publications

Found 139 results
Title [ Type(Asc)] Year
Peer Reviewed Archived Journal Publications
Chang VT, Cartwright PS, Bean SM, Palmer GM, Bentley RC, Ramanujam N. Quantitative physiology of the precancerous cervix in vivo through optical spectroscopy. Neoplasia [Internet]. 2009 ;11:325-32. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=19308287 (332.62 KB)
Vishwanath K, Klein D, Chang K, Schroeder T, Dewhirst MW, Ramanujam N. Quantitative optical spectroscopy can identify long-term local tumor control in irradiated murine head and neck xenografts. Journal of Biomedical Optics. 2009 ;14(5):054051. (361.55 KB)
Brown JQ, Wilke LG, Geradts J, Kennedy SA, Palmer GM, Ramanujam N. Quantitative Optical Spectroscopy: A Robust Tool for Direct Measurement of Breast Cancer Vascular Oxygenation and Total Hemoglobin Content In vivo. Cancer Research. 2009 ;69(7):2919 - 2926. (163.15 KB)
Mueller J, Geradts J, Willett R, Kirsch D, Ramanujam N. A quantitative microscopic approach to predict local recurrence based on in vivo intraoperative imaging of sarcoma tumor margins Fu H, Mito J, Whitley M, Chitalia R, Erkanli A, Dodd L, Cardona D. International Journal of Cancer. 2015 ;137(10).
Nichols BS, Schindler CE, Brown JQ, Wilke LG, Mulvey CS, Krieger MS, Gallagher J, Geradts J, Greenup R, von Windheim K, et al. A Quantitative Diffuse Reflectance Imaging (QDRI) System for Comprehensive Surveillance of the Morphological Landscape in Breast Tumor Margins. PloS ONE. 2015 .
Palmer GM, Viola RJ, Schroeder T, Yarmolenko PS, Dewhirst MW, Ramanujam N. Quantitative diffuse reflectance and fluorescence spectroscopy: tool to monitor tumor physiology in vivo. Journal of Biomedical Optics. 2009 ;14(2):024010. (2.34 MB)
Millon SR, Ostrander JH, Yazdanfar S, Brown QJ, Bender JE, Rajeha A, Ramanujam N. Preferential accumulation of 5-aminolevulinic acid-induced protoporphyrin IX in breast cancer: a comprehensive study on six breast cell lines with varying phenotypes. Journal of Biomedical Optics. 2010 ;15(1):018002. (345.55 KB)
Vishwanath K, Chang K, Klein D, Deng YF, Chang V, Phelps JE, Ramanujam N. Portable, Fiber-Based, Diffuse Reflection Spectroscopy (DRS) Systems for Estimating Tissue Optical Properties. Applied Spectroscopy. 2011 ;65(2):206 - 215. (3.11 MB)
Ramanujam N, Vishnoi G, Hielscher A, Rode M, Forouzan I, Chance B. Photon migration through fetal head in utero using continuous wave, near infrared spectroscopy: clinical and experimental model studies. J Biomed Opt [Internet]. 2000 ;5:173-84. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10938781 (881.69 KB)
Vishnoi G, Hielscher AH, Ramanujam N, Chance B. Photon migration through fetal head in utero using continuous wave, near-infrared spectroscopy: development and evaluation of experimental and numerical models. J Biomed Opt [Internet]. 2000 ;5:163-72. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10938780 (727.21 KB)
Chance B, Cope M, Gratton E, Ramanujam N, Tromberg B. Phase measurement of light absorption and scatter in human tissue. Review of Scientific Instruments. 1998 ;69(10):3457. (348.01 KB)
Bydlon TM, Kennedy SA, Richards LM, Brown QJ, Yu B, Junker MK, Gallagher J, Geradts J, Wilke LG, Ramanujam N. Performance metrics of an optical spectral imaging system for intra-operative assessment of breast tumor margins. Optics Express. 2010 ;18(8):8058. (628.98 KB)
Fu H, Mueller J, Javid M, Mito J, Kirsch D, Ramanujam N, Brown Q. Optimization of a Widefield Structured Illumination Microscope for Non-Destructive Assessment and Quantification of Nuclear Features in Tumor Margins of a Primary Mouse Model of Sarcoma. PLoS ONE. 2013 .
Palmer GM, Marshek CL, Vrotsos KM, Ramanujam N. Optimal methods for fluorescence and diffuse reflectance measurements of tissue biopsy samples. Lasers Surg Med [Internet]. 2002 ;30:191-200. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11891738 (187.47 KB)
Brown JQ, Bydlon T, Kennedy SA, Caldwell ML, Gallagher JE, Junker M, Wilke LG, Barry WT, Geradts J, Ramanujam N. Optical Spectral Surveillance of Breast Tissue Landscapes for Detection of Residual Disease in Breast Tumor Margins. PLoS ONE. 2013 .
Ostrander JH, McMahon CM, Lem S, Millon SR, Brown JQ, Seewaldt VL, Ramanujam N. Optical Redox Ratio Differentiates Breast Cancer Cell Lines Based on Estrogen Receptor Status. Cancer Research. 2010 ;70(11):4759 - 4766. (257.17 KB)
Kennedy S, Geradts J, Bydlon T, Brown QJ, Gallagher J, Junker M, Barry W, Ramanujam N, Wilke L. Optical breast cancer margin assessment: an observational study of the effects of tissue heterogeneity on optical contrast. Breast Cancer Research. 2010 ;12(6):R91. (952.25 KB)
Barrott JJ, Hughes PF, Osada T, Yang XY, Hartman ZC, Loiselle DR, Spector N, Neckers L, Rajaram N, Hu F, et al. Optical and radioiodinated tethered Hsp90 inhibitors reveal selective internalization of ectopic Hsp90 in malignant breast tumor cells. Chemistry and Biology. 2013 .
Rajaram N, Reesor AF, Mulvey CS, Frees AE, Ramanujam N. Non-invasive, simultaneous quantification of vascular oxygenation and glucose uptake in tissue. PLoS ONE. 2015 ;10(1).
Bender JE, Shang AB, Moretti EW, Yu B, Richards LM, Ramanujam N. Noninvasive monitoring of tissue hemoglobin using UV-VIS diffuse reflectance spectroscopy: a pilot study. Optics Express. 2009 ;17(26):23396. (392.68 KB)
Mahadevan-Jansen A, Mitchell MF, Ramanujam N, Malpica A, Thomsen S, Utzinger U, Richards-Kortum R. Near-infrared Raman spectroscopy for in vitro detection of cervical precancers. Photochem Photobiol [Internet]. 1998 ;68:123-32. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9679458
Skala MC, Squirrell JM, Vrotsos KM, Eickhoff JC, Gendron-Fitzpatrick A, Eliceiri KW, Ramanujam N. Multiphoton microscopy of endogenous fluorescence differentiates normal, precancerous, and cancerous squamous epithelial tissues. Cancer Res [Internet]. 2005 ;65:1180-6. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15735001 (1.94 MB)
Palmer GM, Ramanujam N. Monte-Carlo-based model for the extraction of intrinsic fluorescence from turbid media. J Biomed Opt [Internet]. 2008 ;13:024017. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18465980
Palmer GM, Ramanujam N. Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms. Appl Opt [Internet]. 2006 ;45:1062-71. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16512550 (185.83 KB)
Palmer GM, Zhu C, Breslin TM, Xu F, Gilchrist KW, Ramanujam N. Monte Carlo-based inverse model for calculating tissue optical properties. Part II: Application to breast cancer diagnosis. Appl Opt [Internet]. 2006 ;45:1072-8. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16512551 (161.68 KB)

Pages