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Quantitative pathology 

Methodology 

The ability to visualize and quantify tissue features in real time with no 

biological sample processing would be an invaluable tool to the medical 

community.1 Many groups have explored using high resolution technologies 

combined with different contrast agents and image analysis techniques and 

have validated their approaches in various biological contexts (table 1). 

Results: Diagnostic Potential 

Discussion 
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Results: Experimental in vivo images 

Figure 4. Extracted versus expected endpoints from tumor  and tumor + muscle 

phantoms. Density was varied by increasing the number of nuclei present in the 

tumor phantom. The dashed line represents perfect agreement between extracted 

and expected endpoints. Size and density had < 10% error. The extracted spatial 

intensity was slightly lower than expected. This ñmissing intensityò is accounted 

for in the zero-frequency component of the DCT coefficients.  

ü Sparse decomposition successfully separates nuclei from muscle fibers and the 

curved outline of adipose cells in simulated and experimental images. 

ü Endpoints capture statistically significant quantitative differences between 

heterogeneous malignant and homogeneous normal tissue images. 

ü Our high resolution imaging and analysis tool has the potential to be adapted and 

used in a variety of applications due to: 

ü Speed, ease of use, cost 

ü Ability to easily tune algorithm to different heterogeneous tissue sites 

ü Ability to see not only nuclei, but also diagnostically relevant stromal context 

Figure 5. In vivo experimental images of homogeneous and heterogeneous tissue 

types captured from a murine sarcoma model. As expected more nuclei are seen in the 

images containing tumor.  

Tissue type Sites 

(n = 4) 

Malignant 23 

     Tumor 16 

     Tumor + Muscle 7 

Benign 21 

     Muscle 15 

     Adipose 6 

Total 44 

Figure 6. Endpoints stratified by tissue type. Significant differences are seen 

between tumor + muscle (T+M) and muscle (M) in size, density, and spatial 

intensity. The p values were determined through Wilcoxon rank sums and are 

Bonferroni corrected.  

Group Contrast Technology Context Analysis 

Boppart et al2 Intrinsic Interferometric 
vibrational imaging 

Ex vivo murine 
mammary tumors 

Singular value 
decomposition (lipid and 
collagen content) 

Farkas et al3 DAPI Fluorescence microscopy Ex vivo rat mammary 
tumor xenografts 

Watershed algorithm 
(nuclear size, count)  

Gareau et al4 Acridine 
orange 

Confocal fluorescence 
microscopy 

Skin excisions from 
Mohs 

Human-observer 

Gmitro et al5 Acridine 
orange 

Confocal fluorescence 
microendoscopy 

Ex vivo ovarian tissue First order statistics, 
spatial frequency content 

Kortum et al6 Acriflavine Fluorescence 
microendoscopy 

Esophageal biopsies First order statistics, 
spatial frequency content 

Table 1. High resolution technologies for in situ pathology 

Here we elaborate on this work, focusing on quantifying features  in 

heterogeneous tissues that directly reflect tissue morphology. This is 

accomplished through the use of a sparse decomposition algorithm, which to our 

knowledge has never been applied to diagnostic or surgical context.7 Sparse 

decomposition allows us to isolate morphologically distinct tissue patterns by 

exploiting sparse representations in incoherent dictionaries.  

Tissue 
type 

Primary 
structural feature 

Dictionary Summary 
endpoints 

Relation to morphology 

Tumor Randomly dispersed 
nuclei 

Spatial Spatial intensity 
Nuclear density 
Nuclear size 

Contribution from individual 
nuclei, number of nuclei, 
pleomorphism 

Muscle Longitudinal muscle 
fibers 

Discrete cosine 
transform (DCT) 

DCT intensity Contribution from periodic 
striations, namely muscle 

Adipose Curvilinear outline 
of adipose cells 

Curvelet Curvelet intensity Contribution from curved 
structures, namely adipose cells 

Table 3. Sparse decomposition dictionaries and endpoints 

Figure 2. Simulated image phantoms of homogeneous and heterogeneous tissues (top 

row) compared to H&E tissues (bottom row). Simulated images were used to validate 

sparse decomposition for biological samples. Boxplots illustrate the size and density 

ranges seen in H&E micrographs, which were used to determine inputs to simulations.  

Figure 3. Phantom analysis. Input images are combined to create a biologically 

plausible image phantom, sparse decomposition extracts the output images on 

which extracted endpoints are calculated.   

Figure 1. Panel of ex vivo images compared directly to pathology. High resolution 

micro-endoscopy clearly recapitulates tissue structures seen in H&E. Scale bar 

1000 µm.  

Experimental methodology 

Representative ex vivo images: Image-tissue correspondence 

Sparse decomposition represents each image as the sum of three images, which 

are each sparse in a given dictionary. The mutually incoherent dictionaries were 

chosen to isolate specific image features as described in table 3.  

Sparse decomposition algorithm 

Transgenic 

murine sarcoma 

resected8 

Acriflavine9  

applied in  

vivo or ex vivo 

Images acquired 

with high resolution 

microendoscope10 

Images analyzed 

through sparse 

decomposition 

Endpoints 

compared to 

pathology 

Where y is the image data, the operators F and C represent the inverse discrete 

cosine transform (DCT) and inverse discrete curvelet transform respectively. The  

Expected  

endpoints 

Input  

images 
Phantom 

Output 

images 

Extracted  

endpoints 

Sparse 

decomposition 

Nuclear density 

Nuclear size 

Spatial intensity 

DCT intensity 

Curvelet intensity 

Nuclear density 

Nuclear size 

Spatial intensity 

DCT intensity 

Curvelet intensity 

Table 4. Pathological diagnosis of  in vivo sites 

p < 0.02 

p < 0.005 p < 0.005 

Tissue type Agreement Disagreement Concordance 

Malignant 19 2 90% 

     Tumor 16 0 100% 

     Tumor + Muscle 3 2 60% 

Benign 16 6 73% 

     Muscle 14 6 70% 

     Adipose 1 0 100% 

Total 34 8 81% 

Table 2. Subjective diagnosis vs. pathology gold standard 

Simulation: Algorithm validation 

Subjective analysis 
A trained pathologist analyzed representative images of each tissue type and 

diagnosed a separate set of images. Results are shown in table 2.  

ü As seen, our highly trained subjective reviewer performed most poorly on 

mixed tissues in which it is difficult to resolve nuclei against a brightly staining 

background.  

ü Thus, our focus is to separate tumor nuclei from a heterogeneous 

background and quantify parameters aiding disease diagnosis. 
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When applying the algorithm, we obtain estimates of the tissue components by 

solving a sparsity-regularized least squares inverse problem: 

< 10% Error 
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