Quantitative Physiology of the Breast: Impacting Patient Care on Multiple Levels

J. Quincy Brown, Lee G. Wilke, Joseph Geradts, Torre M. Bydlon, Stephanie A. Kennedy, Gregory M. Palmer, Nimmi Ramanujam

Depts. of Biomedical Engineering, Surgery, Pathology, and Radiation Oncology

Fitzpatrick Institute for Photonics
Duke University

BMES Annual Meeting 2008
October 4, 2008
Current Strategies in the Breast Clinic

Screening

www.madisonradiologists.com

www.britannica.com

www.cooperhealth.org

http://images.google.com/
Tissue Absorbers, Scatterers and Fluorophores

Absorption (O.D.)

Soret

α β

Absorption (O.D.)

Fluorescence

Wavelength (nm)

Scatterers
- Cells
- Nuclei
- Chromatin / DNA
- Mitochondria / organelles
- Melanin granules
Quantitative Optical Physiology “Toolbox”

Optical spectrometer

- Xenon Arc Lamp + Monochromator
- Illumination Fibers
- Collection Fibers
- Imaging Spectrograph
- Cooled CCD

Inverse Monte Carlo Models

\[F(\lambda) \quad R(\lambda) \]

\[\rightarrow \text{Tissue composition} \]

Fiber-optic probes

Real-time Control / Analysis Software

- In vivo Breast Tissue Illumination
- Imaging Spectrograph
- Cooled CCD
Inverse MC: An Enabling Technology for Quantitative Physiology

\[R(\lambda) \rightarrow \text{Monte Carlo Reflectance Model}^1 \]

\[\text{Optical Properties} (\lambda_x, \lambda_m) \rightarrow \text{Monte Carlo Fluorescence Model}^2 \]

\[F(\lambda_x, \lambda_m) \rightarrow \text{Intrinsic Fluorescence Properties} \]

\(^1\text{Palmer, GM et al., Appl. Opt. 2006}\)

\(^2\text{Palmer, GM et al., JBO, 2008}\)
Clinical Studies – 1) *In vivo* Optical Biopsy (40 Patients)

Fiber probe inserted into normal and diseased tissues under ultrasound guidance

Diffuse reflectance and Fluorescence EEM’s in UV-Visible

Robust tool for use at time of biopsy
- diagnostics
- prognostics / prescription
- therapeutics
Hypoxia = Aggressive tumors

- Under hypoxic conditions, HIF-1 is upregulated
- HIF-1 upregulates >100 genes that promote angiogenesis, anaerobic metabolism, therapy resistance, metastasis

Applications
- Drug discovery (pre-clinical)
- Prognosis
- Therapy planning
- Therapy monitoring

Dewhirst, Radiother and Oncol 2007
Quantitation of Tumor Oxygenation

*Hemoglobin saturation converted to pO₂ using a model of hemoglobin dissociation. Assumptions: T = 37°C, pH = 7.4, pCO₂ = 40 mmHg, (P₅₀ = 26.6 mmHg)

<table>
<thead>
<tr>
<th>Reference</th>
<th>Malignant</th>
<th>Non-malignant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Badib et al. 1969</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>pO₂</td>
<td>21</td>
<td>41</td>
</tr>
<tr>
<td>Runkel et al. 1994</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>pO₂</td>
<td>31.5</td>
<td>58</td>
</tr>
<tr>
<td>Hohenberger et al. 1998</td>
<td>32</td>
<td>6</td>
</tr>
<tr>
<td>pO₂</td>
<td>42</td>
<td>56</td>
</tr>
<tr>
<td>Brown et al. 2008</td>
<td>20</td>
<td>59</td>
</tr>
<tr>
<td>pO₂</td>
<td>24</td>
<td>39</td>
</tr>
</tbody>
</table>
Hemoglobin Saturation Histography

Why is there such a diverse range in tumor oxygenation?
A tumor’s oxygenation state at the time of diagnostic biopsy can have important prognostic and therapeutic implications!
Clinical Studies – 2) Breast tumor margin assessment ex vivo (80 Patients)

- Women with stage 0, I, II undergo breast conservation surgery
- The pathologic margin status is an important predictor of local recurrence after BCS.
- 20-70% of women undergo re-excision surgery because of positive tumor margins*

The Clinical Device (alpha version)

Computer + software

Xenon lamp + monochromator

Probe interfaced with tissue

Tissue interface

Spectrograph

CCD
Informative Parameter Maps From Diffuse Reflectance
Margin image analysis

QuantiPhysiology Toolbox

In Vivo Optical Biopsy

Ex Vivo Margin Assessment

Margin Size (mm)

Positive

- Posterior Margin: Positive
- Superior Margin: Negative
- Lateral Margin: Negative

Negative

- Posterior Margin: Positive
- Superior Margin: Negative
- Lateral Margin: Negative

Frequency (samples in bin/total samples)

BC/µs'

- Superior Margin: Negative
- Posterior Margin: Positive
- Lateral Margin: Negative

THb/µs'

- Superior Margin: Negative
- Posterior Margin: Positive
- Lateral Margin: Negative
The parameter ratios shown above indicate there are significant differences between normal and cancerous margins.
What is the Potential Clinical Impact?

Without probe: 29% re-excision rate, 65% unnecessary tissue removal rate

- Surgeon incompletely removes cancer (FN) 29% 29
- Surgeon completely removes cancer (TN) 71% 71
- Probe correctly classifies cancer (TP) 68% 20 (Probe saves from re-excision)
- Probe incorrectly classifies cancer (FN) 32% 9 (goes back into OR)
- Probe misclassifies negative (FP) 26% 18 (unnecessary re-shaving)
- Probe correctly classifies negative (TN) 74% 53 (Probe confirms tumor-free margins)

With probe: 9% re-excision rate, 18% unnecessary tissue removal rate
Summary and Future Directions

• Quantitative optical spectroscopy of the breast may be a useful tool for clinical breast cancer management
 – Results from over 150 patients in 2 parallel clinical studies are promising
 – Applications: Diagnostic biopsy, prognosis and prediction, therapeutic monitoring, surgical margin assessment

• Future directions:
 – *Optical biopsy*: Investigate optical biomarkers which predict response, or are modulated by response to neo-adjuvant chemotherapy (pilot study underway)
 – *Margin assessment*: Complete 150-patient clinical study; Complete development of faster beta device
Acknowledgements

NIH RO1 CA100559 (NR)

NIH F32 CA124058 (JQB)

Duke Translational Research Institute (NR)

Duke Comprehensive Cancer Center

Special thanks to all the patients who participated in our clinical studies