Effect of Patient Characteristics on the Optical Properties of Breast TumorMargins

Torre M. Bydron1,*, Stephanie A. Kennedy1, J. Quincy Brown1, Jennifer E. Gallagher1, Marlee S. Junker1, William T. Barry2, Joseph Geradts3, Nimmi Ramanujam1, Lee G. Wilke4

1 Dept. of Biomedical Engineering, Duke University, 2 Dept. of Biostatistics and Bioinformatics, Duke University, 3 Dept. of Pathology, Duke University School of Medicine, 4 Dept. of Surgery, University of Wisconsin School of Medicine and Public Health

BACKGROUND

Optical spectroscopy can quantify the tissue composition of normal and malignant breast tissues. Our multi-disciplinary group is seeking to utilize optical technology for the intra-operative assessment of tumor margins during breast-conserving surgery (BCS) due to the high re-excision rate in this patient population (20-70%). A multivariate model to differentiate positive/close margins from negative margins was previously developed on data from 48 patients and had a sensitivity of 79.4% and a specificity of 66.7%.

OBJECTIVES

✓ Demonstrate the feasibility of a handheld optical spectral imaging probe for intra-operative assessment of breast tumor margins.
✓ Determine the effect of patient characteristics on the optical tissue parameters of negative margins.
✓ Determine the effect of patient characteristics on the optical contrast observed between negative and close/positive margins.

INSTRUMENTATION

Sensing Depth of Probe1
- Malignant: 0.50-1.50 mm
- Adipose: 0.70-2.20 mm
- Fibro-glandular: 0.60-1.50 mm

The fiber optic probe has a footprint of ~2cmx4cm and takes ~25 seconds for data acquisition and processing. The sensing depth for clear margins at Duke University Medical Center is 2mm; the probe design was optimized to sense close and positive margins.

METHODS

Clinical Study: Patients undergoing BCS were consented under an IRB approved protocol. 10-15 minutes after excision, the lumpectomy specimen was oriented in a plexi-glass box for optical imaging. The fiber optic probe was interfaced with the margin surface via the holes of the plexi-glass box.

Comparison to pathology: The area imaged by multiple placements of the probe on a single margin was delineated with green ink for pathologic correlation of margin surfaces. Pathologic margin status of the inked areas was collected from standard surgical pathology reports. Close and positive margins were grouped together since both require a re-excision. Neo-advantageously treated patients were excluded from this data analysis.

Data Analysis:

- # of Imagined Patients: 72
- # of Imagined Margins: 92
- # of Positive/Close Margins: 46
- # of Negative Margins: 46

RESULTS

Figure 2. Box and whisker plots for the total subset of negative and positive margins

Figure 3. Box and whisker plots of mean THb, β-carotene, and <µs'> separating negative and close/positive margins for various patient characteristics. Only significant p-values are shown. * p < 0.05.

DISCUSSION

Understanding the relationship between the heterogeneity and "age-related" changes of the normal breast and the subsequent development of breast cancer remains a paramount challenge towards diagnosing and treating women with breast malignancies. In this study we have evaluated the optical characteristics of "normal" breast tissue in women who have breast cancer undergoing BCT. The optical parameters were sub-analyzed based on pre-selected patient characteristics and then compared to the margin tissue with evident malignancy. The following conclusions are offered:

1. Mean total hemoglobin is higher in the normal margins of high density patients but does not change with the other patient stratifications. Increased contrast is observed in paucites.
2. Mean <µs'> is influenced by the existent tissue density and is best utilized in post-menopausal and nulliparous women with likely greater breast involution.
3. Optical measurement of β-carotene (surrogate for fat) had a paradoxical effect. Higher β-carotene was seen in the normal tissue of patients with higher breast density and pre-menopausal women. Because of this paradoxical increase this optical parameter offers better contrast between normal and malignant margins.

Future studies will incorporate the normal tissue factors into the selection of optical parameters for benign and malignant differentiation in breast margins.

REFERENCES


* Contact Info: tmbydron@duke.edu

The project described was supported by Grant Number 1UL1 RR024982-01 from the National Center for Research Resources (NCRR), a component of the National Institutes of Health (NIH). It was also supported by Grant Number R01 CA150553-03 (NH).